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ABSTRACT

Efficient high-level design tools that can map behavioral descrip-
tions of signal and image processing applications to FPGA archi-
tectures are one of the key requirements to fully leverage FPGAs
for high-throughput computations and meet time to market pres-
sures. Currently, most FPGA designs are entered at the level of
Register Transfer Level (RTL) VHDL or Verilog. It is widely rec-
ognized that there is a need for design tools at the high level using
languages such as C/C++ or MATLAB. MATLAB is an extremely
popular language in the signal and image processing community
with over 500,000 users. A direct synthesis path from MATLAB into
hardware would be very useful. The MATCH compiler at North-
western University 1 takes as input algorithms described in MAT-
LAB, and generates Register Transfer Level (RTL) VHDL. The RTL
VHDL then can be mapped to FPGAs using commercial tools. The
input application is mapped to multiple FPGAs by parallelizing
the application and embedding computation and synchronization
primitives automatically. Our compiler infers the minimum num-
ber of bits required to represent the variables through a precision
inferencing analysis framework. The compiler can leverage op-
timized Intellectual Property (IP) cores to enhance the hardware
generated. The compiler also exploits parallelism in the input al-
gorithm by pipelining in the presence of resource constraints. We
demonstrate the utility of the compiler by synthesizing hardware
for a couple of signal/image processing algorithms and compari-
ing them to manually designed hardware.

1. INTRODUCTION

The concept of using FPGAs for custom computing evolved in the
late 1980’s. Wide adoption of the concept, however, has gained
grounds only recently. One of the principal enabling factor was the
availability of commercial synthesis and physical placement tools
that raised the level of design abstraction to hardware description
languages such as VHDL/Verilog. With gate counts for modern
FPGAs reaching millions, we are poised for yet another revolution.
The goal this time is to raise the level of abstraction to general pur-
pose programming languages such as C/C++, Java and MATLAB
Current design methodologies rely on the expertise of the hardware
engineer to map the application onto a FPGA board. While this en-
ables a lot of flexibility and fine grained control over the design, it
also introduces a lot of logic design at a very low level. Not only
is this process tedious and error-prone requiring costly debugging
iterations, much of the work can be automated resulting in designs
which are correct by construction. Another key aspect of mapping
applications onto hardware is to exploit coarse and fine grained
parallelism in the application. Again, concurrent simulations of
multiple states is not the easiest thing to manage. Many mature
and advanced compiler techniques exist that can discover and ex-
ploit parallelism and weigh different trade-offs automatically. All

1This research was supported in part by DARPA under contract F30602-
98-2-0144 and in part by NASA under contract NAS5-00212.

this will relieve the designer to focus on high level algorithmic as-
pects rather than learning about new board architectures or ways to
boost performance by low level manipulations.

Synthesizing hardware from general purpose languages has re-
ceived attention in both industry and academia. A broad classifica-
tion of the different approached is possible from two perspectives
:

1. Target Language : The approaches can be categorized accord-
ing to the languages they target for synthesis. C/C++ has been
the most popular choice [5, 8, 9, 10, 11, 13, 14, 15, 18, 12].
Java has been the focus of some recent works [17, 16]. Our
focus is on MATLAB.

2. Parallelism Specification : The approaches can be classi-
fied depending on whether they attempt to automatically par-
allelize the input applications [15, 18, 13, 12] or they de-
pend on the user to specify the parallelism [5, 11, 9, 10,
14, 17]. Depending on the user to specify the parallelism
simplifies the compiler a lot, but it typically requires mod-
ifications/additions to the target language. It also burdens
the user to extract the parallelism. User specified paral-
lelism approaches does raise the design abstraction from
VHDL/Verilog, but still require considerable manual itera-
tions and interventions. Automatic parallelization makes the
compiler complex but it doesn’t require any modifications to
the language and the user is not burdened with finding paral-
lelism. This cuts down manual iterations to a minimum. Our
approach is automatic parallelization, but experienced users
can also direct the compiler through directives.

Optimized hardware synthesis from a general purpose language
is a very complex task and the associated compiler framework has
many components. The components include the front-end of the
compiler dealing directly with the target language, the intermediate
synthesis framework, the optimizations involved in synthesizing
the hardware and the back-end which outputs the hardware and
interfaces with lower level tools. All the components have their
own specific issues, which were addressed in individual bits and
pieces with many alternative solutions [1, 3, 4, 8, 11, 12, 13, 15, 14,
17, 10, 9, 18]. Our attempt in this paper is to discuss the complete
system of an optimizing hardware synthesis tool and put forward a
working combination of the mass of solutions contributed for each
aspect of the compiler.

2. USE OF MATLAB FOR SYNTHESIS

While most of the industry and academia has focused on C/C++ as

the system description language, our main focus is on MATLABr

[2]. Whereas many synthesis issues seem independent of the input
specification language, MATLAB does offer distinctive advantage
due to the following two reasons :

1. MATLAB is extremely popular in the signal/image process-
ing community with over500; 000 users. MATLAB is more
intuitive than C/C++ and it enables simulation and visualiza-
tion of algorithms with much less effort than C/C++. A direct
synthesis path from MATLAB without first converting it into
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another language like C/C++ will be very useful and it will
enable very rapid and easy evaluation of a lot of algorithms.
Thus a designer will be able to directly see the tradeoffs re-
sulting from high level algorithmic changes.

2. A key technique that enables multi-million gate designs is re-
use of Intellectual Property (IP) cores. Such cores correspond
to common functions such as FFT, Viterbi decoders and Ma-
trix Multiplication. These functions are available in MAT-
LAB as standard function calls and operators with standard
interfaces. This feature becomes particularly useful in recog-
nizing that a particular IP block can be used for part of the in-
put application and how to generate the interface signals cor-
responding to it. In languages without standard library calls
for the algorithms, there may be innumerable ways to specify
and invoke the algorithms. In such a situation it becomes very
difficult to recognize that an IP block can be used for part of
the algorithm and generating the interfaces for it.

However, MATLAB does have some disadvantages. The two
main issues in that respect are :

1. MATLAB doesn’t have any notion of type/shape for its vari-
ables. This becomes a nightmare from the compiler per-
spective and using existing techniques, in most cases ineffi-
cient code is generated that covers all or many of the pos-
sible types/shapes of the variables. We have developed a
type/shape algebra framework that enables accurate inferenc-
ing, leading to efficient hardware generation [1]. In spite of
the inferencing framework, if the compiler is unable to do a
satisfactory job, the user can force the type/shape of a variable
through directives.

2. Simulation of scalarized MATLAB code is slower than a
compiled approach. This is because MATLAB is an inter-
preted language which incurs a lot of overhead if simple
computations are done in a loop. However, our focus is on
signal/image processing kind of applications where arbitrary
loops and array manipulations is not the norm. Regular loops
with extensive use of library functions is more common for
such applications for which MATLAB is ideally suited.

3. OVERVIEW OF COMPILATION PROCESS

We now present an overview of our compiler architecture. Fig-
ure 1 shows the different compiler phases. The front-end parses
the input MATLAB program and builds a MATLAB AST(Abstract
Syntax Tree). The input code may contain directives [1] regarding
the types, shapes and precision of arrays that cannot be inferred,
which are attached to the AST nodes as annotations. This is fol-
lowed by a type-shape inference phase. MATLAB variables have
no notion of type or shape. The type-shape phase analyzes the in-
put program to infer the type and shape of the variables present
for which type/shape is not provided by directives. This is fol-
lowed by a scalarization phase where the operation on matrices
are expanded out into loops. In case optimized library functions
are available for a particular operation, it is not scalarized and the
IP core corresponding to the library function is used instead. The
scalarized code is then passed through the parallelization phase.
The parallelization phase attempts to exploit coarse grain paral-
lelism by either splitting a loop onto multiple FPGAs on the board
(data-parallel approach) or by putting different tasks onto differ-
ent FPGAs and pipelining the output of one to the input of another
(systolic approach). The parallelization phase relies on commu-
nication libraries implemented for the target architecture board to
communicate between the different FPGAs. A state machine de-
scription in VHDL is then synthesized from the parallelized scalar-
ized MATLAB code for each of the FPGAs . Most of the hardware
related optimizations are performed on the VHDL AST. A preci-
sion inference scheme finds the minimum number of bits required
to represent each variable in the AST. The precision information
is used in instantiating customized IP blocks corresponding to the
functions and operators. Transformations are then performed on

the AST to optimize it according to the memory accesses present
in the program and characteristics of the external memory. This is
followed by a phase to perform optimizations like pipelining un-
der resource constraints that alter parts of the state machine that
was constructed earlier. Finally a traversal of the optimized VHDL
AST produces the output code.

4. EXPERIMENTAL SETUP AND BENCHMARKS

Our compiler is designed to produce code for most current FPGA
architectures. The results presented in this paper are for hardware
generated for theWildChild

TM FPGA board from Annapolis
Micro Systems. It is a VME compatible board with eightXilinx

4010 FPGAs and oneXilinx 4028 FPGA. TheXilinx 4028 has
an external memory that is32-bit wide with 2

18 addressable loca-
tions. The memories connected to the4010s are16-bit wide.

The benchmarks include Matrix Multiplication, FIR filter, IIR
filter, Sobel edge detection algorithm, an Average filter and a Mo-
tion Estimation algorithm. These benchmarks represent typical sig-
nal/image processing applications that are of interest to us. On
one hand, such applications are important as they are representa-
tive of a class of applications that are predicted to be ubiquitous
in next generation computing platforms, in environments that de-
mand high throughput. On the other hand, these applications have
inherent parallelism suitable for exploitation by implementation in
customized hardware.

5. COMPILING MATLAB TO VHDL

One of the challenges in generating hardware from MATLAB is
to figure out the type/shape of the variables. As shown in Fig-
ure 2, the semantics of an operator can depend on the assignments
to the operands. To generate hardware, the compiler must figure

a  =  1   ;
b  =   3  ;

c   =    a  *   b  ;

( i )

a =  rand( 256 , 234 );
b = ones(234, 512 );

c  =  a   *  b  ;

( ii )

Figure 2. The semantics of an operator depends on the
type/shape of the operands in MATLAB. In (i) � is a scalar
multiplication whereas in (ii) it is a matrix multiplication.

out the exact data type i.e, integer or floating point, or complex
numbers etc. The compiler also needs to figure out the shape i.e,
how many dimensions the matrix (array) has, what are the extents
in each dimension, etc. Our type shape algebra framework auto-
matically figures out the type-shape of the variables [1]. In patho-
logical cases where the compiler is unable to infer the type/shape
of the variables, the user can assist the compiler by specifying the
type/shape of selected variables. Once the type/shape of the vari-
ables are determined, the matrix operations are scalarized, the oper-
ations are expanded out into loops. Scalarization of the MATLAB
AST is necessary when the objective is to perform a source-to-
source transformation to a target language that is statically typed
and which only supports elemental operations. MATLAB is an
array-based language with many built-in functions to support array
operations. Hence, to generate a VHDL description, it is neces-
sary that the corresponding MATLAB AST is scalarized. Figure 3
shows an example where VHDL code is generated corresponding
to a matrix multiply operation. Extensive discussion of VHDL gen-
eration from MATLAB is reported in [1]. The framework is capa-
ble of handling multi-dimension matrices which are mapped to an
external memory. In addition, the loop and function call constructs
of MATLAB are also supported. Figure 4 shows the experimental
results of execution times of the benchmarks on aXilinx 4028

using manual and compiler approaches. As can be seen, the man-
ually designed hardware on the average is five times better than
the compiler output, noting that it took several months to complete
the manual designs while the compiler generated the hardware in a
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Figure 1. Overview of the synthesis framework.

a  =  ones( 256 , 256 ) ;
b  =  ones(256 , 128 ) ;
         :
         :
c   =   a   *  b  ;

Type/Shape
Inferencing

a =  256 X 256  integer

b =  256 X 128  integer

c  =  256 X 128 integer

state 1 : i  <=  1 ;

state 2 :   if( i < 256 )
                 next <= state2
               else
                  next <= state 20;

                    :

--  apply address to memory interface

end;
   end;
     end;

      c(i , k ) = c(i , k ) + a( i, j ) * b(j , k) ;
    for k = 1 : 128
  for j = 1 : 256
for  i = 1 : 256

state    20 :
state   19 :     next <= state 2 ;

state  13 :     b_data <= mem_in ;

state 12 :      a_data <= mem_in ;

:

:

-- calculate    address

Generation

Machine
State

Scalarization

Figure 3. An example showing how a state machine is syn-
thesized for matrix multiplication by first doing type/shape
analysis, followed by scalarization.
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Figure 4. Ratio of execution times of compiler gener-
ated hardware compared to manually designed hardware is
shown. For example, for the matrix multiplication benchmark,
the compiler generated hardware is 4 times slower than the
manually designed hardware.

matter of minutes.Reduction of design time is the key advantage
of using the compiler. In the next few sections, we elaborate how
our compiler closes the performance gap between its output and
the manually designed hardware.

6. PRECISION INFERENCING

One important factor in generating customized hardware for an ap-
plication is to efficiently utilize the silicon budget available. A
key observation in this regard is that most image/signal process-
ing computations are confined to 8 v 16 bits. To fully leverage
this fact, the minimum number of bits required to represent each
variable must be inferred and appropriate operators instantiated in
place of generic 32-bit operators. However, figuring out the preci-
sion manually in a real life design can be very tiresome and error
prone. Our precision inferencing algorithm propagates value range
information back and forth the AST to figure out the minimum
bits required to represent a variable, see Figure 5. In case where

a  =  8  ;        %  4  bits  required

b  =   4 ;       % 3 bits required

d  =   a + b ;  %  4 bits required

e  =   b  + input()  % unknown , give
                              % directive

Figure 5. Illustration of precision inferencing.

the precision of variables cannot be determined statically, the user
can specify the precision by a directive; otherwise the most con-
servative estimate is taken. For floating point variables, in associa-
tion with the precision inferencing algorithm an error analysis and
propagation scheme is included. The error analysis determines the
resolution of the floating point variables needed given a specified
error that can be tolerated at the output. Details of the precision
and error analysis algorithms can be found in [1]. Figure 6 shows
the savings of resources in terms of CLBs when the precision in-
ferencing algorithm is applied as opposed to instantiating generic
32 bit operators.

7. PIPELINING

A close study of the manually designed hardware and the compiler
generated hardware showed that the principal reason behind the
better performance of the manually generated hardware was ex-
ploitation of fine grain parallelism and pipelining of the memory
accesses. This prompted us to devise an automated way of pipelin-
ing the memory accesses and exploit fine grained parallelism. Our
pipelining framework achieves this objective, an overview of which
is given in Figure 7. The pipelining phase starts by performing de-
pendency analysis of the loops and basic blocks. The GCD test is
employed to figure out loop carried dependencies. In case there are
no backward dependencies in a loop, the loop is deemed pipelin-
able. Next the number of memory ports are read as input to the
pipelining algorithm. The pipelining algorithm then performs mod-
ulo scheduling [1] which overlaps different iterations of a loop such
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Figure 6. Ratio of the resource utilization in terms of CLBs
while instantiating 32-bit operators as compared to determin-
ing the minimum number of bits required by precision infer-
encing.
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Figure 7. An overview of the pipelining framework.

that number of memory access in any state does not exceed the
number of memory ports specified. The modulo scheduling algo-
rithm can be based on either ASAP (as soon as possible) or ALAP
(as late as possible) algorithms. The reason the pipelining algo-
rithm is based on memory ports is that many of the image/signal
processing applications are memory bound. They tend to perform
simple operations on relatively large data sets that reside in exter-
nal memories. Hence, optimizing the memory accesses in general
has a huge impact on performance. Conflicts created in variables
due to overlapping of iterations is solved by renaming the variables
as discussed in [1]. Figure 8 shows the impact of pipelining on
performance. The compiler generated pipelined hardware matches
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Figure 8. Ratio of the execution times of the compiler gener-
ated hardware with and without pipelining is shown, normal-
ized to the execution time of manually designed hardware.
For example, for the Sobel benchmark, the compiler gener-
ated hardware without pipelining is 8 times slower, whereas
the pipelined hardware is as fast as the manual design.

the manual designs in most cases. In fact, the compiler generated
pipelined hardware fares better than the manually designed hard-
ware for the FIR and Motion Estimation benchmark. This is due
to the fact that manual designers typically pipeline and exploit par-
allelism within a single iteration of the loop. The compiler can
handle much more complexity and exploits parallelism across the
different iterations of the loops. For example, the pipeline kernel
synthesized for the motion estimation benchmark contained 200

concurrent statements spanning 5 iterations. Such complexity can
only be handled in an automated fashion.

8. SUMMARY

We now present the result of performing all the optimizations to-
gether and compare with manually designed hardware. We would
like to emphasize once more that the manually generated hardware
took months of design effort whereas the compiler generated the
hardware in a matter of minutes. While a massive reduction in de-
sign time is achieved, the quality of the hardware generated was
not compromised. Indeed, the hardware generated by the com-
piler were very close to the manually generated hardware in per-
formance, in fact better in some cases. Figure 9(i) shows an input
image to the Sobel edge detection algorithm. Figure 9(ii) shows
the output of the Sobel edge detection algorithm as simulated in
the MATLAB interpretor.

The same MATLAB code was then used to synthesize a
pipelined hardware. The output of the hardware is shown in Fig-
ure 9(iii). The output matches the simulation result pixel by pixel.
The designs generated by the compiler are correct by construction
and do not require debugging iterations. Figure 10 shows the com-
parison of the execution times of the compiler generated hardware
with the optimizations against the manually designed hardware for
the benchmarks. Figure 11 shows a comparison of the resource
utilization for the same. The performance of the compiler output
and manually optimized hardware are comparable. The resource
utilization of the compiler generated hardware are within a factor
of four of the manually designed hardware.
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Figure 10. Ratio of the execution times of the compiler gen-
erated hardware with the optimizations as compared to the
manually generated hardware.
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Figure 11. Ratio of the CLBs used by the compiler generated
hardware with optimizations as compared to the manually
generated hardware.
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(i)Input Image (ii)MATLAB Interpreter (iii)Annapolis Wildchild

TM

Figure 9. A grayscale image is shown in (i). Output of the Sobel edge detection algorithm simulated in the MATLAB interpretor
is shown in (ii). The MATLAB code is used to synthesize hardware for the AnnapolisWildchild

TM board and its output is shown
in (iii).

9. CONCLUSIONS AND FUTURE WORK

In conclusion we have presented a compiler capable of generating
highly optimized hardware from applications described in MAT-
LAB. A set of effective optimizations implemented in the compiler
ensures that the quality of the output hardware is comparable to
manually optimized hardware. The optimizations include paral-
lelization, precision inferencing, IP core integration and pipelining.
The effectiveness of the compiler was demonstrated by synthesiz-
ing hardware for a couple of signal/image processing applications.
The outputs of the synthesized hardware were functionally veri-
fied against the outputs of the MATLAB interpretor. The execution
times were almost equivalent to manually designed hardware, in
fact superior in some cases were large amount of parallelism was
available across loops. The resource utilization were within a fac-
tor of four of the manual designs. All this was achieved while
reducing the design time from months to minutes.

The major focus of our current and future work is in the follow-
ing two directions

1. We are investigating methods to identify and utilize opportu-
nities to synthesize on-chip caches to reduce the memory traf-
fic and boost the performance of the synthesized hardware.

2. We are concentrating on accurate prediction of the resource
and routing resources needed for a particular design to achieve
design closure in minimum iterations possible.
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